7 research outputs found

    Directional Reflectance Studies in Support of the Radiometric Calibration Test Site (RadCaTS) at Railroad Valley

    Get PDF
    The Radiometric Calibration Test Site (RadCaTS) is a suite of commercial and custom instruments used to make measurements of the surface reflectance and atmosphere throughout the day at Railroad Valley, Nevada. It was developed in response to the need for daily radiometric calibration data for the vast array of Earth-observing sensors on orbit, which is continuously increasing as more nations and private companies launch individual environmental satellites as well as large constellations. The current suite of instruments at RadCaTS includes five ground-viewing radiometers (GVRs), four of which view the surface in a nadir-viewing configuration. Many sensors such as those on Landsat-7 and Landsat-8 view Railroad Valley within 3 of nadir, while others such as those on Sentinel-2A and -2B, RapidEye, Aqua, Suomi NPP, and Terra can view Railroad Valley at off-nadir angles. Past efforts have shown that the surface bidirectional reflectance distribution function (BRDF) has minimal impact on vicarious calibration uncertainties for views <10, but the desire to use larger view angles has prompted the effort to develop a BRDF correction for data from RadCaTS. The current work investigates the application of Railroad Valley BRDF data derived from a BRF camera developed at the University of Arizona in the 1990s (but is no longer in use) to the current RadCaTS surface reflectance measurements. Also investigated are early results from directional reflectance studies using a mobile spectro-goniometer system during a round-robin field campaign in 2018. This work describes the preliminary results, the effects on current measurements, and the approach for future measurements

    Landsat-7 ETM+ Radiometric Calibration Status

    Get PDF
    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/sq m/ sr/micron bias error. The updated lifetime trend is now stable to within + 0.4K

    Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations

    No full text
    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard Terra platform, which was launched in 1999, has three separate subsystems: a visible and near-infrared (VNIR) radiometer, a shortwave-infrared radiometer, and a thermal-infrared radiometer. The ASTER VNIR bands have been radiometrically corrected for approximately 14 years by the sensor degradation curves estimated from the onboard calibrator according to the original calibration plan. However, this calibration by the onboard calibrator encountered a problem; specifically, it is inconsistent with the results of vicarious calibration and cross calibration. Therefore, the ASTER VNIR processing was applied by the radiometric degradation curves calculated from the results of three calibration approaches, i.e., the onboard calibrator, the vicarious calibration, and the cross calibration since February 2014. Even though the current degradation curves were revised, the inter-band and lunar calibrations show some inconsistencies owing to the different traceability in the bands by different calibration approaches. In this study, the current degradation curves and their problems are explained, and the new curves that are derived from the vicarious calibration with lunar calibration are discussed. The new degradation curves that have the same traceability in the bands will be used for future ASTER VNIR processing.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore